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ABSTRACT 

We show that the 3-connected graphs can be generated from the complete 

graph on four vertices and the complete 3,3 bipartite graph by adding 

vertices and adding edges with endpoints on two edges meeting at a 3- 

va]ent vertex. 

1. I n t r o d u c t i o n  

In this paper we present a new recursive construction of the 3-connected graphs. 

Several recursive constructions are known. Tutte [3] has proved that all 3- 

connected graphs can be generated from the wheels by repeated application of 

adding edges between existing vertices, and splitting vertices so as not to pro- 

duce triangles. Another well known generation procedure (see, for example, [1]) 

generates the 3-connected graphs from the complete graph on four vertices by 

adding edges, where an added edge can join two existing vertices or can meet the 

relative interiors of edges, creating new vertices. 

In this paper we show that the 3-connected graphs can be generated from 

the complete graph on four vertices and the complete bipartite graph K3,3 by 
repeated application of two processes: Adding a vertex, and adding an edge with 

endpoints on two edges meeting at a 3-valent vertex. 

2. Definitions and n o t a t i o n  

The graphs in this paper are without loops or multiple edges. If P is a path in 

a graph, and if x and y are two vertices of P, then P[x, y] is the portion of P 
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joining x and y, and P(x, y) is P[x, y] with the endpoints (but not the end edges) 

removed (such a path  will be called an o p e n  p a t h ,  or o p e n  arc) .  If  we wish to 

indicate a subpath with one end included and one excluded we use notation such 

as P[x, y). An arc  of a graph G is a maximal path P[x, y] such that  all vertices 

of P(x, y) are 2-valent in G. The vertices of a graph of valence at least three will 

be called p r i n c i p l e  vertices. A graph H is a r e f i n e m e n t  of a graph G if H is 

obtained from G by adding vertices to the edges of G. If H is a refinement of G, 

and all vertices of G are principle vertices, then we say that  G is the u n d e r l y i n g  

g r a p h  of H,  and we denote it by H*. For any given graph G, we will label the 

vertices of G* with the same labels as the corresponding principle vertices in G. 

An edge with vertices x and y will be denoted xy. A path formed by joining 

smaller paths A and B at a common endpoint will be denoted AB. The same 

notation will be used to join more than two paths, including paths consisting 

of single edges, thus a pa th  that  traverses A then xy then B would be denoted 

AxyB, and so on. 

A graph G is 3-connected provided between any two vertices x and y there 

are three paths that  meet only at x and y. If G is a graph such that  G* is 3- 

connected, we say that  G is 3 * - c o n n e c t e d .  We say that  a graph G is obtained 

from H by a d d i n g  v e r t e x  v, provided we obtain the graph H by removing from 

G, the vertex v and the edges meeting it, and then coalescing any pairs of edges 

meeting at resulting 2-valent vertices, into single edges. Such a vertex v is called 

a r e m o v a b l e  vertex of G. 

The proof of the following lemma is a routine application of the definition of 

3-connectivity. 

LEMMA 1: If  H is 3-connected, G is obtained from H by adding v, and the edges 

of G meeting v do not all meet the same edge of H (after the removal of v and 

coalescing of edges), then G is 3-connected. 

If H is a subgraph of G and v is a vertex in G but not in H,  then a pa th  f r o m  

v to  H is a pa th  P[v, x] with P N H -=- x. A family of paths from v to H is 

i n d e p e n d e n t  provided no two paths have a vertex in common, other than v. 

LEMMA 2: If  G is &connected, H is a subgraph of G containing at least three 

vertices, and v is a vertex of G not in H, then there are three independent paths 

in G from v to H. 

Proof'. We add a new vertex w to G by attaching it to three vertices of H.  By 
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Lemma 1, the new graph G ~ is 3-connected. We take three paths from v to w in 

G', meeting only at v and w. Clearly a subpath of each of these paths joins v to 

H. | 

A graph H is obtained from a graph G by adding an arc, provided H is obtained 

by adding a path  P[x, y] to G, such that  P meets G only at x and y, and x and 

y do not lie on the same arc of G. The vertices x and y can be vertices of G 

or can be relative interior points of edges of G. Another easy application of the 

definition of 3-connectivity shows: 

LEMMA 3: I f  G is 3*-connected and H is obtained from G by adding arcs, then 

H is 3*-connected. 

We shall denote the complete graph on four vertices by C4, and the complete 

biparti te graph on two sets of three vertices by K3,3. The following is a well 

known property of 3-connected graphs (see, for example, [1], Lemma 4): 

LEMMA 4: Every 3-connected graph contains a refinement of C4. 

A t r i a n g l e  in a graph is a subgraph consisting of three edges xy, yz and zx. 

The vertices x, y and z are called the v e r t i c e s  o f  t h e  t r i ang le ,  and the triangle 

will be denoted xyz.  If C has a triangle xyz  with at least one vertex 3-valent in 

G, then xyz  will be called a t - t r i a n g l e  of C. 

A w h e e l  is a graph consisting of a simple circuit C, and a vertex h not on C, 

that  is joined to each vertex of C. The edges meeting h are called the s p o k e s  of 

the wheel. 

3. T h e  m a i n  t h e o r e m  

THEOREM 1: I f  G is a 3-connected graph, other than C4 or  /(3,3,  then G has 

either a removable vertex or a t-triangle. 

Proof." We assume that  G does not have a t-triangle. The first part  of our proof 

involves an inductive construction of a subgraph H of G containing all of the 

vertices of G, and such that  H* has a removable vertex. 

We shall do this by constructing a sequence of subgraphs G o , . . .  Gk, of G, such 

that  Gk = H.  We begin with a subgraph G0 of G that  is a refinement of C4. 

We now describe how to construct Gn from G,~-l. The construction assumes 

the existence of a vertex v of G that  is not in Gn-1. (The case where every 

refinement of C4 contains all vertices of G will be treated last.) 
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We begin by adding arcs that  join v, to Gn-1,  creating a graph G'  We ~ 2 - - 1 "  

do not s:?ecify how many arcs we add. It  can vary from zero to the maximum 

number possible for the particular Gn-x.  (Different choices generally give differ- 

ent sequences of Gi's, and later on we will be considereing the set of all possible 

sequences.) 
! Since G is 3-connected, there are three independent paths from v to Gn_ 1. If  

! the three paths do not all end on the same arc of G~_ x, then we add the three 
! arcs to G,~_I, creating G,~. By Lemmas 3 and 4, G~ is 3*-connected if Gn-1 is. 

! 
Suppose that  all choices of the three independent paths from v to Gn_ x end on 

! the same arc, A of G'n_l. Let U be the union of all paths in G from v to G~_ 1. 

As we traverse A from one endpoint to the other, let x be the first vertex of U, 

and y be the last vertex of U encountered. 

Since there is a pa th  from v to x missing A, and a pa th  from v to y missing 

A, there is a vertex v'  on the intersection of these paths such that  there are two 

independent paths P1 and P2 in U, from v' to x and y, missing A (see Fig. 1). 

V | 

s r x l z  ]y q t 

)-;  t 
Fig. 1 

I Note that  if there is a pa th  P3 from any vertex of U to any arc of Gn_ 1 other 

than A, then one can either extend that  pa th  to intersect P1 or P2, or take a 

subpath of it, so that  there are three independent paths from some vertex of U 

to G'  n - l ,  not all ending on A, thus we can assume that  no such pa th  P3 exists. 

Case 1: Some path  P(z, w) joins A(x, y) to some open arc of G'~_I, other than  

A, with z on A(x, y) (see Fig. 1). We replace A(x, y) in G'n_l, with P1P2. Note 

that  this produces a graph G : _  1 homeomorphic to G'~_ 1. Now we add the vertex 

z and the paths: A(x, z], A[z,y), and P,  to G : _ I ,  to produce the graph Gn. 

Case 2: No such pa th  exists. Let the endpoints of A be s and t, and let the 



Vol. 86 ,  1994  A C O N S T R U C T I O N  O F  3 - C O N N E C T E D  G R A P H S  401  

order on A be s, x, y, t. Since G is 3-connected, there must be a path in G joining 
! 

some arc of G,~_I, other than A, to either A(s, x] or A[y, t), otherwise we can 

separate G at s and t. Suppose such a path pr is joined to A(s,x], and among 

all such paths let P' be one whose endpoint r on A(s, x] is closest to x. If no 

such path exists, we let r = s. Suppose that such a path P"  is joined to A[y, t), 
and that among all such paths, P"  is one with an endpoint q nearest to y. If no 

such path exists, we let q = t. There must be a path in G from A[s, r) to A(r, t], 
or from A[s, q) to A(q, t], for otherwise we could disconnect G by removing r and 

q. Suppose, without loss of generality, that we have a path Q[a, b], with a on 

A[s, r), from A[s, r) to A(r, t]. In G' ~-1, we replace A(a, b) with Q, producing a 

graph G" ~ " n-1 homeomorphic to Gn_ 1. Now, to Gn_ 1 w e  add Ale, r], Air, b] and 

pr, to produce Gn. 

We continue adding arcs, vertices and paths in this manner. The process stops 

when we reach a subgraph G~ of G, that is 3*-connected and contains all vertices 

of G. Furthermore, G~ has a removable vertex v (corresponding to the principle 

vertex added to a subgraph homeomorphic to G~_I). 

The vertices added at each step (from which the three independent paths 

emanate) will be called spec ia l  ve r t i ces  of G. Now, among all subgraphs Gk 

that can be constructed in this manner, we let H be one with the maximum 

number m(H),  of special vertices, and we also assume that among all with re(H) 
special vertices, H is one such that the sum j(H) of the lengths of the arcs from 

t v to the subgraph homeomorphic to Gk_ I is minimal. We shall now refer to the 
! 

subgraph homeomorphic to Gk_ l, to which v and its arcs were added, as K. 

The next part of the proof consists in showing that each of the arcs from v to 

K is an edge. Suppose that A[v, v ~] is one of these arcs and that x is a vertex on 

the open arc A. We treat four cases. 

Case 1: In G, x is joined to a vertex y on an arc B[v, z], with v ~ and z joined by 

an arc C in H. We replace C by the path A[v', x]xyB[y, z], producing a subgraph 

of G homeomorphic to H, such that the sum of the lengths of the arcs meeting 

v is less than j(H). 

Case 2: In G, x is joined to a vertex y on an arc B[v, z] such that no arc in 

H joins v' and z. By Lemma 3, adding the path B[z, y]yxA[x, v'] to K creates 

a new subgraph L of G, that  is 3*-connected. If we add v, the paths Air, x], 
B[v, y] and the other arc of H meeting v, to L, we obtain a graph H I consisting 
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of H with the edge xy added. The graph H ~ is 3*-connected and v is removable 

in (H')*, but j (H')  is smaller than j(H).  

Case 3: In G, x is joined to a vertex y on an arc C, not meeting v, and y and 

v ~ are joined by an arc. An argument similar to Case 1 shows that j (H) is not 

minimal. 

Case 4: In G, x is joined to a vertex y on an arc C, not meeting v, and y and v ~ 

are not joined by an arc in H. An argument similar to Case 2 shows that j (H)  
is not minimal. 

We conclude that in H, each edge meeting v also meets K. This implies that 

each edge in G meeting v meets K, for if an edge pv did not meet K, then p 

would not be in H, contradicting the fact that H contains all vertices of G. 

The next step of our proof involves adding edges of G - K missing v, to K, one 

at a time, while preserving the 3*-connectivity of the resulting graphs. Suppose 

that we have added all edges that we can that preserve 3*-connectivity, producing 

a graph K t. Now, any edge that we add creates a double edge in the underlying 

graph, thus every edge to be added has both vertices on one arc of K ~ (such edges 

will now be refered to as chords) .  Suppose that A[x, y] is such an arc. Note that 

at least one edge from v must meet A(x, y), by the 3-connectivity of G. 

We shall show that all edges missing v can be added by showing that if this 

were not true, then we can find another subgraph H ~, such that m(H ~) = m(H) 
but a vertex of A does not lie in H ~, thus we can construct a graph H" from H ~ 

with m(H") > m(H). 
First we note that if vv ~ is an edge of G meeting A(x, y), but is not an edge of 

H, we may substitute vv ~ for any edge of H meeting v and A(x, y), and obtain 

a graph with the same value of m. Next we note that if st is a chord, then there 

must be a vertex between s and t on A to prevent double edges in G. If the edges 

of H, from v to A all meet A[x, s] or all meet A[t, y] (we shall assume an order of 

x, s, t, y on A[x, y]), then we can replace A(s, t) in H by st, and obtain the desired 

graph H ~ missing all vertices between s and t. It now follows that if two edges 

from v in G meet either A[x, s] or A[t, y], then we can reach a contradiction. We 

shall now treat three cases. 

Case 1: There are three edges vp, vq and vr in G from v to A. In all cases the 

graph H ~ is easily constructed. We shall show the case where p is on A(x, s), and 

q and r are on A(s, t). The other cases are similar. We shall assume an ordering 
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ofx, p, s, q, r, t, y on A. In K ~, we replace A(s,t) by st. Then we add v, vp (and 

the path vqA(q, s), if two edges of H meet v and A), and the edges of H meeting 

v and missing A. This new graph H t now missed the vertex r. 

Case 2: There do not exist three edges from v to A in G and there exists only one 

edge from v in G that misses A. In this case v is 3-valent in G. Let vp and vq be 

the two edges to A, with the same ordering as before. There must be a vertex on 

A(p, q), for otherwise vpq is a t-triangle in G. Let st be a chord meeting A(p, q). 
If all such chords had both vertices on A(p, q), then p and q would disconnect G, 

thus we may assume that t is on A(p, q) and s (by symmetry) is on A[x,p). 

If there is a vertex w on A(p, t) then we can construct H ~ by replacing A(s, t) 
by st in K ~, then adding vpA(p, s), vq and the third edge of H meeting v. Now 

H ~ misses w. A similar argument holds if there is a vertex on A(s,p). It now 

follows that spt is a t-triangle in G unless a chord meets p. Let pw be such a 

chord. The graph H ~ is now easily constructed. Again we shall show one case, 

the others are similar. 

Suppose that  w is on A(q, y]. We replace A(p, w) by pw, in K ~. We add 

v, vp, vqA(q, w) and the third edge meeting v in H. This new graph misses t. 

Case 3: There are at least two edges in G from v missing A, that do not both 

meet another arc meeting x or y. In this case we add these two edges and one 

edge vp from v to A, to K ~, and we shall now refer to this graph as H. We now 

note that every chord has p between its vertices on A, for otherwise as we have 

observed above we can easily construct the graph H ~ missing a vertex between 

the vertices of the chord. Let st be such a chord, with the ordering on A being 

x, s, p, t, y. 

If there is a vertex w on A(s,p) then we replace A(s,t) with st, in K ~. We 

add v, vpA(p, t), and the other two edges of H meeting v, creating a graph H ~ 

missing w. Similarly, there cannot be a vertex on A(p, t), thus spt is a t-triangle 

in G unless a chord meets p. Suppose we have a chord pw. If w is on A[x, s), 
we replace A(p, w) with pw in K ~, then add v, vp and the other two edges of H 

meeting v, creating a graph H ~ missing s. A similar argument holds if w is on 

A(t, y]. Since sp and pt are edges, these are the only two possible locations for 

Case 4: There are at least two edges in G missing A, but all such edges meet 

another arc meeting y (or x, both cases are the same). We construct a new graph 
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H and choose a chord st as in Case 3. Now, if there is a vertex w on A(s,p), 
the argument in Case 3 will not hold, because if t = y, all arcs from v in H I 

will go to the same arc of K ~. If this does happen, then the argument in Case 3 

shows that  there cannot be a vertex on A(p, t). Any chord meeting A(s,p) must 

now have both vertices on A[x, p], and the existence of such a chord then allows 

us to easily construct a graph H ~ missing a vertex between the vertices of the 

chord as in previous cases. It  follows that  there are no such chords, and thus any 

vertex on A(s,p) is joined only to v. Such a vertex must be a 3-valent vertex in 

a t-triangle of G. 

In every case we have reached a contradiction, thus we may add all of the 

edges of G - K,  missing v, to K,  while preserving 3*-connectedness at each step. 

When all of these edges have been added, v is still a removable vertex. Adding 

any remaining edges in G meeting v does not change the removability of v, thus 

v is a removable vertex of G. 

This completes the proof except for the case where every choice of Go contains 

all vertices of G, in which case the process described above cannot get started. 

In this case, we first consider a subgraph J of G, whose underlying graph is a 

wheel with a maximum number of spokes. Since G~ is a wheel, such a maximal 

wheel exists. If  J does not contain all vertices of G, then a subgraph of J ,  that  

does not contain all vertices of G, can serve as a Go. 

Suppose that  J* has at least four spokes. If  any path  in J ,  corresponding to a 

spoke, has a vertex, then one can easily get a refinement of C4 in J that  misses 

that  vertex. Thus J consists of a simple circuit C and a central vertex h joined 

to various vertices of C by edges. 

If an edge of G - J joins any two points on C, the reader may easily verify 

that  there will be a refinement of Go missing a vertex. If no such edge exists 

then J = G, and G has t-triangles. 

Suppose, now, that  J is a refinement of C4. Suppose there is an edge uv of 

G joining two open arcs A and B of J as shown in Fig. 2. If B[u, y] is not an 

edge in G, then a refinement of C4 is easily constructed missing the vertices on 

B(u, y). By the same reasoning, A[v, y] is an edge. If u is 3-valent in G, then G 

has a t-triangle. We leave it to the reader to check that  if an edge is added from 

u then the resulting graph has a refinement of C4 missing a vertex (note that  an 

edge cannot join u to z or w, because then a larger wheel would exist). 
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Suppose that an edge e joins two open arcs A and B of J as shown in Fig. 3. 

This produces a refinement of K3.3. It is easily checked that if one adds a vertex 

to any edge of g3 ,  3 then the resulting graph has a refinement of C4 missing that 

vertex. It follows that J with e added is K3,3, and that G is either K3,3, or K3, 3 

with edges added between vertices of K3,3. It is easily checked that if even one 

new edge is added between vertices of K3,3, then the resulting graph contains a 

refinement of C4 missing at least one vertex. | 

4. Generat ing  3 -connected  graphs 

We shall say that G is obtained from H by a d d i n g  a t -edge,  provided H is 

obtained from G by removing an edge of a t-triangle opposite a 3-valent vertex, 

and coalescing edges at 2-valent vertices. The next theorem follows immediately 

from Theorem 1. 

THEOREM 2: The 3-connected graphs can be generated from C4 and K3,3 by 

adding vertices and adding t-edges. 

5. Other construct ions  

There are three other well known recursive constructions of the 3-connected 

graphs. In this section we show that they follow rather easily from our main 

theorem. 



406 D. BARNETTE Isr. J. Math. 

THEOREM 3: (Thomassen [2]) Every 3-connected graph other than C4 has a 

contractible edge. 

Proofi Let G be a 3-connected graph other than C4. If G has a t-triangle, 

then it is easily seen that  the edge meeting the triangle on its 3-valent vertex is 

contractible. 

Suppose that  G has no t-triangles. Let v be a removable vertex. If we take an 

edge vw meeting v and contract it, we obtain a graph that  is G with v removed 

and edges added. As long as the edges added do not have both endpoints on 

the same edge of G - v, the result is a 3-connected graph. If one of the added 

edges, say wx, has both endpoints on an edge e of G - v then these endpoints 

must be vertices of G - v, otherwise wxv is a t-triangle. If, however, there are 

added edges that  make multiple edges with edges of G - v, then we coalesce the 

multiple edges into single edges, and the resulting graph is 3-connected. 

The only case not covered by this argument is the case where G is K3,3, for 

which the theorem is obviously true. | 

THEOREM 4: (Tutte [3]) The 3-connected graphs can be generated from the 

wheels by adding edges between existing vertices and splitting vertices so as not 

to produce triangles. 

Proof'. Suppose that  G is a 3-connected graph that  is not a wheel. We shall say 

that  an edge is t-contractible provided it is contractible and isn't an edge of a 

triangle. We shall say that  it is t-removable if it is removable and it does not meet 

a 3-valent vertex. We therefore wish to show that  G has either a t-contractible 

or a t-removable edge. 

Case 1: G contains a t-triangle xala2 with vertex a2 3-valent and joined to 

vertex ao by a n  edge. The edge xa~ is removable, and is t-removable unless one 

of its edges is 3-valent. Also the edge aoal is contractible, and is t-contractible 

unless aoal lies on a triangle. Let us assume that  xaoal is a triangle. If x is 

3-valent, then G is C4 thus we may assume that  a2 is 3-valent and is joined to a 

vertex a3. If  a3 ~- ao then G is C4 and we are done, so we assume that  this is 

not the case. Now using the contractibility argument for a2a3 we conclude that  

xa2a3 is a triangle. Repeating these arguments, a3 is 3-valent and is joined to a 

vertex a4 which can' t  be the same as a0 because then G would be a wheel. This 

argument can be continued indefinitely creating triangles meeting x with their 

other two vertices 3-valent. This contradicts the finiteness of the graph. 
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Case 2: G has no t-triangles. Let v be a removable vertex. As we have seen 

in Theorem 3, each edge meeting v is contractible, thus we are done unless each 

edge meeting v is an edge of a triangle. In this case v has valence at least 4, and 

it follows that each edge meeting v is removable. This is because removing an 

edge is the same as removing v then adding the vertex v back together with all 

but one of its original edges. If the resulting graph were not 3-connected, then 

all the added edges would meet one edge of G - v, and thus G would have a 

t-triangle. Now, however, a removable edge e meeting v must be t-removable, for 

otherwise e would meet a 3-valent vertex and lie on a triangle, a contradiction. 

Again, the special case of/(3,3 is obvious. | 

Similar arguments will also prove the well-known result that  all 3-connected 

graphs except C4 have removable edges. 
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